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Automated quality assessment of clinician actions and 
patient outcomes is a central problem in guideline- or 
standards-based medical care.  In this paper we describe a 
model representation and algorithm for deriving structured 
quality indicators and auditing protocols from formalized 
specifications of guidelines used in decision support systems.  
We apply the model and algorithm to the assessment of 
physician concordance with a guideline knowledge model 
for hypertension used in a decision-support system.  The 
properties of our solution include the ability to derive 
automatically (1) context-specific and (2) case-mix-adjusted 
quality indicators that (3) can model global or local levels of 
detail about the guideline (4) parameterized by defining the 
reliability of each indicator or element of the guideline. 

Introduction  
Clinical guidelines are increasingly being used as tools to 
improve the quality of medical care.1 An important task in 
quality improvement using computerized guidelines is that 
of developing quality assessments to measure concordance 
of physician actions and patient outcomes in relation the 
guideline.  One proposed approach to guideline-based 
quality assessment, suggested by the Agency for Healthcare 
Research and Quality (AHRQ) is to (manually) derive 
quality indicators (both outcome and performance measures) 
from the specification of the guideline itself.2   However, 
currently used methods for quality indicators, such as the 
National Quality Measures Clearinghouse (NQMC) of the 
AHRQ,3 are simply long lists of ratio-based measures that 
are generated and applied outside of any context of a full 
clinical guideline.  For instance, the predecessor to the 
NQMC, the CONQUEST System, had about 1,200 measures 
spread over 50 conditions, giving an average of 24 different 
quality measures for a condition without any of the 24 being 
reconciled to the appropriate clinical guideline or guideline 
elements.4   

Clearly, giving condition-specific assessments of quality 
with 24 different answers begs the questions of creating (a) a 
coherent modeling and reporting structure among these 
quality indicators preferably in relation to a clinical 
guideline for the condition,  (b) a method of producing a 
“global assessment” or overall summary measure of quality, 
and (c) a method for designing an auditing protocol to know 

which of the measures to sample from the potential set in 
relation to the full clinical guideline.  To answer these three 
questions, we extend our previous work on the development 
of guideline-based quality indicators. Our previous work has 
addressed questions (a) and especially (b) by showing that 
we can structure discrete ratio-based quality indicators from 
full clinical guidelines by modeling higher-level intentions 
of the guideline. 5,6 The intentions of the guideline allow us 
to model and evaluate higher-level, more global constraints 
that encapsulate properties relating to many sub-steps of the 
guideline processes and the relations between processes and 
outcomes stipulated by the guideline authors. 7,8  

In this paper, we address the problem of how to derive a 
global yet structured set of quality indicators when the 
guideline is represented as a formal specification used to 
drive an automated decision support system.  We contrast 
this problem to that of developing quality indicators from 
guideline texts, where an automated approach to deriving the 
quality indicators would currently be unfeasible.  Our work 
is based on the QUIL (Quality Indicator Language) system5 
for modeling and executing queries for guideline-based 
quality indicators.  Below, we describe how the QUIL 
system can be applied to the problem of representing and 
deriving quality indicators from formalized guidelines.  We 
discuss the implementation of the method in the QUIL 
Modeler component of the QUIL system.  We then show 
how the QUIL representation is the basis for an automated 
method to derive quality indicators and to design auditing 
protocols that are (1) context-specific and (2) case-mix-
adjusted and that (3) can represent global or local levels of 
detail about the guideline (4) parameterized by defining the 
reliability of each indicator or element of the guideline. 

Methods 
The QUIL system for automated quality assessment scores 
adherence to hierarchical sets of quality-indicators derived 
from guideline plan elements or higher-level intentions. Our 
method is designed to take guidelines expressed in guideline 
specification languages such as EON,9 ASBRU,10 or 
GLIF3,11 and produce a set of related quality indicators as 
individual nodes in a hierarchical guideline-based QUIL 
Structure.  In Figure 1 we present an example based on our 
current implementation of the QUIL system that starts with a 



model of an EON guideline for hypertension used in the 
ATHENA clinical decision support system.12  

Quality Indicator Language. The QUIL Modeler 
component takes guideline elements expressed as frames in 
the Protégé knowledge-modeling tool for the guideline and 
produces another Protégé knowledge model expressing the 
QUIL structure of quality indicators (shown with diagram 
widget in the Figure).  To outline our method, we start first 
with the target language, QUIL, expanding on our previous 
exposition.5 In this paper, we focus our discussion on the 
semantic features of the QUIL graph structure. 

The QUIL structure is a directed acyclic graph (DAG) of 
nodes representing quality indicators, and (directed) arcs or 
edges representing elaborations of the quality indicators into 
more context-restricted or consequential nodes.  In the QUIL 
structure, the higher-level indicators in the hierarchy can be 
considered higher-level intentions of the guideline while 
lower-level indicators may be more specific processes or 
adjusted outcomes.  Individual performance criteria or 
outcome measures can be embedded as nodes in the 
guideline-based QUIL structure.  QUIL nodes define dyadic 
(or ratio-based) queries consisting of goal (numerator) and 
enabling (denominator) constraints, preserving the form of 

ratio-based population quality indicators.  Satisfaction of the 
goal constraint defines a clinical execution of the medical 
guideline that satisfies the quality indicator, given the 
appropriate evaluation context defined by the enabling 
constraint.  The evaluation context can be used to model the 
case-mix associated with a quality indicator.  Furthermore, 
the expansion of the quality indicators into lower-level nodes 
that are associated with more specific evaluation contexts is 
a way to model case-mix adjustment of the higher-level 
quality indicators. 

For instance, the “Drug Treatment” process node can be 
considered a high-level intention of the guideline. Although 
we can still conceptually assign it a utility based on 
appropriate drug treatment from the disease-specific 
customizations of care in the child nodes, we cannot measure 
this complex process directly.  We can, however, elaborate 
the node into more specific nodes that are directly queryable.  
These elaborated nodes may (1) measure indicators 
associated with a narrower patient evaluation context than 
their parent(s) created by elaborating the parents’ enabling 
constraint.  The nodes may also (2) represent consequents of 
the parent under some elaboration of the parent’s goal 
constraint.  Or both (1) and (2) may hold.  Thus when we 
elaborate the “Drug Treatment” node by decomposing the 

 

 

 

 

 

 

 

 

 

 

Figure 1.  QUIL Structure for the ATHENA Hypertension Guideline.  The screenshots show the EON guideline specification and 
the QUIL structure for the hypertension guideline used in the ATHENA decision support system.  The image on the left shows the 
Protégé knowledge frames used in the EON model of the main guideline instance and the “Beta-Blocker” drug usage class.  Our 
method takes the knowledge roles from the EON guideline and maps them onto quality indicators and elaboration relations in the 
QUIL structure, shown in the image on the right.  Each node in the QUIL structure represents the quality indicator for a specific part 
of or collection of parts of the EON guideline.  The nodes have logical relationships with their children, with downward-pointing 
triangles as OR nodes, and upward-pointing triangles as AND nodes. The numbers in the nodes refer to the utilities to the patient of 
satisfying the quality measure.  The circular nodes represent entry constraints that narrow the evaluation contexts of their child nodes 
by adding to their enabling constraints. We illustrate the enabling and goal constraints defining the “Rx ACE-I” and “Rx β-Blocker” 
nodes. Note that all the co-morbidities of the enabling constraints of these two nodes have been inherited from circular nodes above. 

               <ACE-I>       
<HTN,  CAD, no DM, 
COPD>

              <Beta -Blocker>
<HTN,  CAD, no DM,  
no COPD> 



guideline plan into condition-specific treatments with drugs 
in appropriate classes, we are elaborating both the enabling 
and goal constraints to produce directly measurable process 
nodes such as “Rx β-Blocker”.  For example, the lower-level 
“Rx β-Blocker” quality indicator is satisfied if β-Blockers 
were prescribed in those patients with diagnoses of 
hypertension and coronary artery disease, but no diagnosis of 
diabetes with proteinuria nor obstructive pulmonary disease. 
The enabling constraint of “Drug Treatment” is elaborated 
by restricting the patient evaluation context of cases 
measured by the “Rx β-Blocker” node to exclude diabetes 
with proteinuria, and then down a level further to exclude the 
relative contraindication of obstructive pulmonary disease.  
Similarly, the goal constraint of “Drug Treatment” defined 
as giving any drug intervention that is anti-hypertensive 
(thus satisfying that node’s parent constraint to “Reduce 
BP”) is elaborated into a disjunction of treatment options 
using more specific antihypertensive drug classes. 

QUIL Structures from Guideline Specifications.  Now 
that we have described our representation for QUIL 
structures, we outline our method for deriving QUIL 
structures from a guideline specification.  Our algorithm 

depends on the existence of mapping relations between the 
elements or roles in knowledge base of the guideline 
specification and the QUIL elements that can be derived 
from these (see Table 1).  For example, the evaluation 
context for a quality indicator can be derived from the 
knowledge roles representing the conditions or criteria for 
executing guideline elements.  In the case of our “Drug 
Treatment” nodes, for instance, we can use the “Compelling 
or Relative Indications” and “Relative or Absolute 
Contraindications” to define the evaluation context for each 
drug class listed in the main guideline instance.  The higher 
“Rx β-Blocker” node has been restricted to cases with 
coronary artery disease since that is a compelling indication, 
but the lower, more specific node, is defined on cases that 
are also without obstructive pulmonary disease since that is a 
relative contraindication.  

The main algorithm then involves using the mapping 
relations to traverse the knowledge base containing the 
guideline specification in a context-consistent way so that 
the QUIL structure derived from the knowledge base is well 
defined.  Our algorithm consists of the following steps:  

QUIL Structure 
element to map to 

Frame-based EON 
guideline model element 
to map from 

ASBRU or GLIF3 element 
with similar knowledge roles 
(for comparison) 

Instantiated examples from 
ATHENA hypertension 
guideline 

Minimum # of 
potential elements 
to map from 
ATHENA KB to 
QUIL Structure 

Enabling 
constraint to define 
evaluation context 

Drug usage relative and 
absolute 
(contra)indications 

ASBRU: Filter, Setup 
conditions. GLIF3: 
Patient_State_Step, 
Decision_Step 

Hypertension and coronary 
artery disease as compelling 
indications for beta-Blocker 
treatment 

750 

Goal constraint for 
process indicators 

Drug usage drug class 
references 

ASBRU: Plan body, process 
intention.  GLIF3: Guideline 

Using an anti-hypertensive for 
Drug Treatment in 
hypertension guideline. 

60 

Goal constraint for 
outcome indicators 

Guideline goal criteria in 
guideline instance frames 

ASBRU: State intention, 
Plan effect. GLIF 3: 
Patient_State_Step 

Guideline goals for blood 
pressure targets 

3 

Elaborations based 
on decomposing 
plans  

Slots for plan elements 
present in frames for plan 
and action steps 

ASBRU: Plan body sub-
plans. GLIF3: Sub-guidelines 

Drug Treatment decomposed 
into specific “Drug_Usage” 
anti-hypertensive sub-classes 

77 

Elaborations based 
on materializing 
outcomes or plans 

Slots for plan elements 
associated with slots for 
goals or outcomes. 

ASBRU: Plan bodies 
associated with effects or 
intentions. GLIF3: Action 
step sequences 

“Reduce BP” outcome 
materialized to 
“Drug_Treatment” and 
“Lifestyle_Changes” 

5 

Table 1.  Mapping Relations Between Knowledge Roles in Guideline Specification and QUIL Structure.  The table 
above outlines the mappings between knowledge roles in the EON guideline model and the QUIL Structure.  The various 
knowledge elements required to generate the QUIL structure are listed in the first column.  The second and third columns list 
the corresponding knowledge elements from the EON guideline model and (potentially) the ASBRU and GLIF3 guideline 
models that could be used to derive a QUIL structure.  The next two columns show examples and enumerations of the 
knowledge elements corresponding to each type of mapping from the ATHENA hypertension guideline knowledge base. 



1. Choose an anchor knowledge frame and parent 
QUIL node to elaborate into child nodes in the 
QUIL structure. For instance, the main “Guideline 
Instance” frame in Figure 1 can map to the 
“Manage HTN” node.  

2. Enumerate the potential set of QUIL child nodes 
that can arise from the mapped frame.  If a one-to-
many relationship exists between the anchor frame 
and these QUIL nodes (such as many drug classes 
to use for “Drug Treatment”), create a disjunctive 
set of children elaborated from the parent QUIL 
node.  The elaborations are derived by mapping 
slots in the anchor frame to consequence relations 
between QUIL nodes.  For example, the slot “Drug 
Classes” can be used to elaborate the “Drug 
Treatment” node from “Manage HTN”.  The next 
level of indirection on “Drug Classes”, pulling up 
the instances of the “Drug Usage” class can then be 
used to elaborate the “Drug Treatment” further. 

3. Enumerate the set of evaluation contexts that apply 
to a particular node that has been elaborated from 
the anchor frame in the knowledge base.  We can 
impute these evaluation contexts from the criteria 
associated with the frame instance.  Here we use a 
mapping from slots in the frame instances to 
components of the node enabling constraints.  So 
for “Manage HTN” we can put in the “Guideline 
Instance” slot “Eligibility Criteria” as the enabling 
constraints.  For “Drug Treatment” we can use 
“Compelling Indications” as enabling constraints as 
described above. 

4. Since the QUIL structure allows multiple parents, 
we need to make sure the elaborated nodes are 
inserted correctly in the graph structure.  We do this 
by making sure our insertion is done in such a way 
that no matter how we have traversed the 
knowledge base, the set of parents of the QUIL 
inserted node will always be the same.  This 
requires that we insert the node so that we use the 
least number of parents that are required to for the 
node to inherit the largest number of its enabling 
and goal constraints.  That is, we place the node in 
its minimally sufficient evaluation context.  The 
problem is very similar to that of classifying an 
instance in a description logic, but ours is a simpler 
form involving only a two scalar lists of properties.  
We defer the discussion of this algorithm due to 
space constraints. 

5. After inserting the node, we recursively repeat steps 
(1)-(4) by simply defining a new anchor frame and 
QUIL node for each of our newly inserted nodes 
that have been elaborated.  We continue until we 
either exhaust the knowledge base or satisfy a 
stopping criterion.  The stopping criterion is based 

on the lower bound on the number of patient cases 
satisfying the node as required by our auditing 
protocol.  We expand on the lower bound and it’s 
relation to designing auditing protocols below.   

Results 
Auditing Protocol Design with QUIL.   As we traverse the 
knowledge base and continually add more context-specific 
node to the QUIL structure, the number of patients falling to 
the bins associated with each of the nodes will continue to 
decrease. For example, in our hypertension knowledge base 
used to model an implemented, real-world guideline, there 
are over 700 criteria that may potentially define the 
evaluation context for a particular patient case.  Clearly, a 
fully elaborated QUIL model of the hypertension guideline 
would be too densely connected and deep to be used for an 
understandable assessment of quality.  It has been shown 
that as the number of patient cases satisfying the evaluation 
context for a quality indicator decreases, the reliability of the 
quality indicator also decreases.6 For this reason, we 
introduce a stopping criterion for elaborating the guideline 
that depends on the number of patient cases falling into a 
leaf node in the generated QUIL structure.  Thus, our 
algorithm with the bin-number stopping criterion may 
produce a set of guideline-based quality indicators that is 
optimally reliable for a given patient data set. 

We present the results of applying our auditing protocol 
design method to a dataset comprising records of 
hypertension care for approximately 1000 patients in seven 

 

 

 

 

 

 

 

 

 

Figure 2.  Reliability as a function of bin size. The reliability of 
the QUIL structure leaf node “Rx β-Blocker” is plotted for the 
patient populations of the seven primary care clinics at the VA 
Palo Alto.  We can see that the three clinics where less than 20 
patients satisfied the node’s enabling constraints had reliability 
scores less than 80%.   
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clinic divisions of the Palo Alto VA Health Care System, 
California.  We show how the bin-number stopping criterion 
behaves on the “Rx β-Blocker” leaf node in the QUIL 
structure generated in the example in Figure 1 for each of the 
seven clinic divisions.   We have used equations based on 
split-half reliability and the Spearman-Brown prophecy 
formula, to model the effects of bin size on quality indicator 
reliability.13  In Figure 2 we plot the reliability of the QUIL 
structure leaf node “Rx b-Blocker” is plotted for the patient 
populations of the seven primary care clinics at the VA Palo 
Alto.  From Figure 2, we see that our lower bound for at 
least 80% reliable quality indicators places a lower bound of 
about 20 patient cases on the bin size of a node in the 
generated QUIL structure.  We can see that the three clinics 
where less than 20 patients satisfied the node’s enabling 
constraints had reliability scores less than 80%.  The QUIL 
structure would not include that indicator in the hypertension 
auditing protocol for those three clinics, but would include it 
for the other four sites. 

Discussion 
In this paper we have described a model representation and 
algorithm for deriving structured quality indicators and 
auditing protocols from formalized specifications of 
guidelines used in decision support systems.  We have 
applied the model and algorithm to the evaluation of 
physician concordance with recommendations from a 
guideline-based decision support system for hypertension.  
Our solution uses the concept of evaluation contexts to 
derive context-specific and case-mix-adjusted quality 
indicators quality indicators from guideline specifications.  
Through the use of the hierarchical graph structure of quality 
indicator nodes and their elaborations, we can model global 
or local levels of detail about the guideline in our quality 
assessment.  Lastly, we have shown that by parameterizing 
our algorithm’s stopping criterion, we can design auditing 
protocols that incorporate information about the reliability of 
using each element of the guideline as a quality indicator. 
In addition to quality assessment, our method can be applied 
to problem of evaluating clinical trials of complex decision 
support systems, where many elements of the guideline 
recommendations must be simultaneously evaluated.  A 
major limitation of (and potential for future work on) the 
method described above is that it does not incorporate the 
ability to query temporal patterns between nodes and 
constraints.  This limits us from automatically deriving 
quality indicators that measure clinician adherence to 
guideline recommendations involving the dynamic execution 
of the guideline plans.  For example, we cannot derive an 
indicator that tries to measure whether a physician 
prescribed an ACE-I at a later time in response to a guideline 
recommendation to add an ACE-I to the patient’s regimen.  
In summary, we have developed a principled method for 
developing auditing protocols and global assessments using 
quality measures derived from formalized medical 
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